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SUMMARY 
The stability of three dimensional infinitesimal disturbances is examined for the laminar flow of a thermally 
radiating, viscous, electrically and heat-conducting fluid between parallel walls with transverse magnetic 
field. In addition to the classical criteria for the non-radiative case a further system of homogeneous differ- 
ential equations with mixed boundary conditions arises yielding possible further eigenvalues and require- 
ments for stable flows. For the overall configuration the analogue of Squire's theorem is shown to fail. 
The eigenvalue problem is of unusual type with the eigenvalue parameter appearing non linearly in both 
the differential equation and boundary conditions. A study of two-dimensional disturbances is carried out 
in detait for non-thermatIy conducting fluids and for a particular wave number the further eigenvalues are 
shown by exact analysis to be always stable. In channels with black wails at the same temperature extensive 
numerical calculations for a range of wave-numbers and a variety of other parameters all yield the same 
result. 

I. Introduction 

The stability of  plane Poiseuille flow in hydrodynamics poses a classical problem and leads 

to the solution of  the Orr-Sommerfeld equation, the analysis o f  which continues to be an 
active field of  research, see Davey [1]. The effect of  a magnetic field upon the stability of  

a corresponding magnetohydrodynamic flow was first studied in detail by Stuart [2] in the 
case when the magnetic field is parallel to the velocity and by Lock [3] for the case of a 

transverse field, commonly known as Har tmann flow. I t  was shown that in the latter con- 
figuration the magnetic field has a powerful stabilising influence, although the calculations 

were carried out only under conditions of  small magnetic Reynolds number. More  recent 

analysis by Sagalakov [4] and Potter  and Kutchey [5] confirms Lock's results although 
there is shown to be a strong dependence additionally upon the magnetic Prandtl number. 

In this paper a study is made of the stability of  plane Har tmann flow for a fluid suffi- 
ciently hot for the effects of  thermal radiation to be significant. Analysis of  the steady state 

problem by the present author, Helliwell [6], in the case when thermal conductivity may be 
neglected leads to an exact closed form for the solution from which it is clear that thermal 
radiation has a marked effect upon the temperature profile. The same problem but with 
non-zero thermal conductivity was examined in a second paper, Helliwell [7]. However 
an analytic solution is now unavailable but from a numerical solution it is apparent that 
except in conditions of  very strong conduction the previous distributions for the radiative 
flux and temperature remain qualitatively valid except in the immediate vicinity of  the 
walls. 
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In the development of the stability problem effects of viscous and ohmic dissipation, 
thermal conductivity and radiation are retained together with three dimensional distur- 
bances. In the calculations leading to the numerical results, however, in order that pertur- 
bations from an analytically expressed steady state may be studied the effects of thermal 
conductivity are neglected. Furthermore the disturbances are then restricted to be two di- 
mensional. Whilst the neglect of molecular conduction at the same time as the retention of 
thermal radiation is apparently somewhat lacking in physical realism, previous investiga- 
tions of stability problems involving thermal convection and radiative transfer have shown 
that the results are qualitatively the same whether or not molecular conduction is retained, 
see for instance papers by Christophorides and Davis [8] and Spiegel [9]. Thus for the 
present related problem the same assumption is perhaps not unreasonable. The calcula- 
tions lead to the conclusion that thermally radiating magnetogasdynamic charme! flows are 
never less stable than similar cooler flows in which the effects of radiative heat transfer may 
be neglected. 

2. The basic equations and steady state 

The governing equations for the flow of an electrically conducting viscous and heat con- 
ducting fluid are well established. They may be found, for instance, in the book by Sherctiff 
[10]. The effects of thermal radiation at temperatures which are not extremely high are 
accounted for by the inclusion of an additional term in the energy equation. The features 
are discussed by Vincenti and Kruger [11] in their text upon the subject, and it is shown 
there that only the radiative flux is significant. 

However the closure of the set of governing equations leads to a system of integro- 
differential equations which link the radiative flux to the radiative intensity and the equa- 
tion of radiative transfer. Various forms of approximation have been employed in order 
to circumvent the rather complex nature of the exact system of equations. In the analysis 
of this paper the so-called differential approximation is used under conditions appropriate 
to a grey gas of arbitrary opacity, see for instance, Vincenti and Kruger (loc. cit.). 

The steady state flow considered is that parallel to the 2 axis down a channel of great 
width in the Z direction between walls distance 2h apart parallel to the 25 plane of a carte- 
sian coordinate system. The bounds of the channel normal to the ~ axis are taken to be 
electrodes of perfect electrical conductivity whilst the walls normal to the ~ axis are sup- 
posed perfect insulators. An external magnetic field is applied uniformly across the channel 
in a direction normal to these insulators. The fluid in the channel is taken with a finite 
constant electrical conductivity and constant coefficients of viscosity, absorption and ther- 
mal conductivity, but is otherwise not defined further. Then under the assumption that the 
electrodes are infinitely far apart the problem becomes one-dimensional. As already re- 
marked in the previous section, solutions have been presented in earlier papers by the 
present author for non-Mack walls of arbitrary emissivities and temperatures. The notation 
employed in these previous paper~ is retained for the analysis of this paper. 
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3. The perturbation equations 

Without restriction three dimensional perturbations are considered. Steady state quantities 
are indicated with a bar superscript and are known functions of position, whilst perturba- 
tions are denoted by a tilde, thus B = B + B where B = B(~, fi, if, t). The following lin- 
earised forms of the governing equations may then be derived, where in the energy equa- 
tion the notation of cartesian tensors is used in part. In general B denotes the magnetic 
flux, V the velocity, q the radiative flux, p the density, T the temperature, ] the electric cur- 
rent density and Z the vorticity. Furthermore # is the permeability, ~ the electrical con- 
ductivity, t / the  coefficient of viscosity, k the thermal conductivity, e the volumetric ab- 
sorption coefficient, ff Stefan's constant, el and e2 the wall emissivities and e, the specific 
heat at constant volume. The time is denoted by t. 

It should first be noted however that for the steady state flow, as a consequence of the 
steady nature and one-dimensional configuration, as remarked above it is unnecessary to 
define the precise thermodynamic properties of the fluid. In particular the density is com- 
pletely unrestricted and may be, for instance, a function of the temperature. However in 
order to ease and make tractable the analysis of many problems in thermal stability the 
assumption is made that the fluid is incompressible but subject to the Boussinesq approxi- 
mation, see for example Christophorides and Davis [8]. Thus here the same broad as- 
sumption is introduced, which has the further advantage of making possible a direct com- 
parison with previous work in the absence of radiation. It is not thought worthwhile in 
this initial study to introduce any additional complexity since the constancy of the various 
dissipative, diffusive and absorptive coefficients is itself a rather poor approximation. Fur- 
ther investigations are being undertaken for a more realistic model in which the dependence 
of these coefficients on the temperature is accounted for and in which no gross assumption 
is made concerning the compressibility. These will be reported in due course. 

The conservation equation for the magnetic flux is 

div/] = 0 .  (1) 

The conservation equation for the mass is 

div I7 = 0. 

Fxom the "magnetic vorticity" equation 

0B 1 
= curl(V x B) + V2B 

at /1~ 

we derive 

(2) 

- (/~.grad)V + (B.grad)l 7 -  (V.grad)/~ - (lT.grad)B + V2/~. (3) 
~t #o- 

From the momentum equation 

0V 
p - ~  + p(V'grad)V - j  x B + gradp - ~V2V = 0 
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we obtain 

p + (V.grad)Z, + (17.grad)Z - (Z 'grad)17-  (Z.grad)V 

= r/V2Z, + (B. g rad ) f  + (B" grad)j - (3" grad)/~ - ( f .  grad)B, (4) 

where 

= curl V, 2, = curl I7, (5) 

/~ = curl B, /~f-= curl B. (6) 

- -  - ,V~ .m(V~ .m + V m . 3  = o 

The energy equation 

pcv -ff~- + V'grad T + d i v q -  kVeT - 

becomes 

per - ~  + V . g r a d T +  17.gradT + divq - kV2~-2"] ' ]a  

The equation for the radiative flux 

grad div q - 3e2q - 4~e grad(T 4) = 0 

takes the form 

(7) 

grad div ~ - 3e2~ - 166e(T 3 grad ~ + 3T2~grad T) = 0. (8) 

The system of equations (1) to (6) is the basic set previously studied by Lock [3] in the 
absence of radiative effects. The reader should note that certain of these equations are im- 
plied by the others and that no difficulties result from the fact that there appear to be more 
equations than variables. Stuart [2] commented explicitly upon the matter in relation to 
the analogous set of equations in his paper. 

It remains to specify the boundary conditions upon the perturbed quantities. These re- 
late to electromagnetic and no-slip conditions at the walls together with radiative con- 
ditions, which for walls of general emissivity have been given by Cess [12] under the differ- 
ential approximation. With the 2 axis taken to be the centre line of the channel, the per- 
turbed forms are 

y =  +h, 

y = h ,  

I7=0, ]~=0, By=0, 7 ~=0; 

(4) 
16#T3T-  ~-2 - 2 c~, - 1--div~e = 0; 

( ~  ) l d i v q  0; 16#T3~ + 4 _ 2  ~ y -  ct 

(9) 

y = - h .  (lO) 
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in the case k ~ 0. If thermal conductivity is negligible so that k = 0 then the condition 
= 0 must be relaxed at both boundaries. 
When the perturbation equations are written in non-dimensional form a number of di- 

mensionless parameters arise, conventionally named as follows: 

O" z 
Hartmann No. M = Boh , Bouger No. o~ = eh, 

pUoh 
Reynolds No. R - - - ,  Boltzmann No. 

Magnetic Reynolds No. Rm = I~aUoh, Prandtl No. 

r 
Adiabatic Index ? = - - ,  

cv 

We also define 

Temperature Ratio 

Eckert No. 

pvg 

Pr = .qcp 
k ' 

6 -  
c TI 

x, y, z - 

O - Current No. J - - -  
7"1 ' aUoBo 

where B o is the applied magnetic flux, Uo and Jo are the mean steady state fluid speed and 
current density respectively, T1 and T2 are the wall temperatures at y = T h respectively, 
and cp the specific heat at constant pressure. The associated non-dimensional variables are 

Y ~ Uot 
Coordinates: Time: z - 

h ' h ' h  h 

B 
b -  

Bo  

T 
0 = - -  

7"1 

V 
Velocity: v - Magnetic Flux: 

Uo 

q 
Radiative Flux: Q - aT~ Temperature: 

Three dimensional perturbations are considered of the form 

= {v~(y), vr(y), v=(y)} exp i[Kl(x - cz) + Kaz 1, 

= {bx(y), by(y), bz(y)} exp i[Kl(x - ez) + Kaz], 

0 = {Q~(y), Qy(y), Q=(y)} exp i[Kl(x - ev) + Kaz], 

0 = O(y)exp i[Kl(x - ev) + K3z]. 

It will be found useful to set 

K 2 = I(12 § I(32. 

(11) 

(12) 

(13) 

(14) 

(15) 

Equations (1)-(6) together with the appropriate boundary conditions separate from the 
remainder and generate relationships between the velocity and magnetic flux alone. After 
considerable algebra these yield six independent differential equations which may be written 

+ iKlbl  v~ - blv r +  f~m dY --z - R--~ + iKi(c - vl) b~ + vlb r = O, (16) 
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+ iKlb 1 v, + 1~. dy ~ - R--~ + iKl(c - vl) b , = O ,  (17) 

dby 
iKlbx + -~y + iK3b ~ = O, 

dpy 
iKlv ~ + ~-y + iK3v ~ = 0, 

iK3 d 2 iK2K3 

R dy 2 R 
K1K3(c - vl) } vy 

1 d 3 l K2 

+ R d 7  + R 
- -  -- iKl(c -- vl) + iKlv' 1 v~ 

+ RRm iK3 dy  + iKibl br + R~m 

(18) 

iK 3 d 2 iK2K3 } 
R dy ~ + ~ + K1K3(c - vl) v~, 

(19) 

d } 
aY 2 iK~y iK~bl bz=0, (20) 

iK1 dZ iK2K1 - KZl(c - vl)}vz 
+ iK3v'iv" + R dy z R 

) - RR--TiK3 + iK~bl bx - RR----~iK#lb, 

+ RR., iK1 + iKlb 1 b~ = O. (2I) 

Here the steady state variables, vl, bi are given by, see Helliwell [6], 

M(cosh M - eosh My) 
vi = M c o s h M - s i n h M  ' (22) 

b i = R , ~  M c o s h M - s i n h M  - y M c o s h M - s i n h M  + d  , (23) 

and a prime denotes the derivative with respect to y. The system may be reduced to a pair 
of differential equations in by and v r alone. These are equation (17) together with 

dy4 + Kl (  c -  vl) ~y2 + K2 + Ki(c  - vl) - Klv2 Vy 

M2 ( d 3 d2 "1 
RR,, l dy - Klbx - iKz d~ + K1KZb~ + Klb'~ by = 0. (24) 

Equations analogous to these have been studied in the analysis of the non-radiative prob- 
lem, see Lock [3] equations (21) and (22), and the reader is referred to his paper and those 
by Sagalakov [4] and Potter and Kutchey [5] for the details. 
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The radiative effects are restricted to equations (7) and (8) with the relevant boundary 
conditions. One obtains four equations relating v~, vy, b~, by, 0, Q~, Qy, Q~. From these Q~, 
and Q~ may be eliminated to leave the two remaining equations 

(K + 3o~ 2) [iK~(v, - c )  + 
Y Kz 7 dZ_] 167~%ze00~ } 
RP, RP, ~ + - 0 

+ 37eoJ2 dQy { 27evi dv,~ ( 2yeiK,v',) 
fl ~ -y  +(K2 +3c~ R dy + 0; R vy 

2vMZeb'a dbx 27M2eiKlb'l } 
RR,, z dry + RR~ - -  by = 0, (25) 

3co - ( K  2+3~o 2) Qy + 16(K 1 -  1)05 01~y  + 30~ 0 = 0 ,  (26) 

where 01 is the steady state dimensionless temperature and v~, vy, bx, by may be supposed 
known solutions of the separated system (16)-(24). Therefore a system of six equations 
governing the stability problem for radiative flow may be taken as equations (16, 17, 24, 
25, 26) together with the following equatioa (27) obtained from equations (t8), (19) and (21) 

" dy z R + iK1K2(c - vl) vx 

iK1 d3 I iK2K1 
+ R dy ~ + R 

M2 2 [ d iKlbl)b~ ' 
+ -i 2 K + 

M2 { d 2 d 2 , }  
+ ~ -iK1 dy- ~ + K~bl~y + K3b 1 b y = 0 ,  (27) 

Tkus with radiative effects present additional equations arise governing the flow from 
which further conditions for stability may arise. Thermal radiation therefore cannot pro- 
vide a stabilizing influence, although its effect may be neutral should the disturbances as- 
sociated with equations (25) and (26) be always stable. 

4. Two- and three dimensional disturbances: Squire's theorem 

The disturbances are two-dimensional if K 3 = 0 and then K = K 1. Otherwise, for three- 
dimensional disturbances, K > K1. In the absence of both thermal radiation and magnetic 
field Squire (13) showed that two-dimensional disturbances become unstable at lower val- 
ues of Reynolds number than similar three-dimensional disturbances. Subsequently Lock 
[3] proved that Squire's theorem remains true in the presence of a transverse magnetic 

Journal of Engineering Math., Vol. 11 (1977) 67-80 



74 J. B. Helliwell 

field provided that the comparison is made with M held fixed. However in the case of an 
aligned magnetic field Hunt [14] demonstrated that the theorem is no longer true. The 
validity of the theorem is now considered for thermally radiating flows with transverse field. 

In the governing equations (16, 17, 24, 25, 26, 27) retain M invariant and set 

K1R = Kff~, K1Rm = KRm, Klb l  = Kbl, Klb~ = Kbx, Klby = Kby 

where, meantime, the bar denotes a quantity in the two-dimensional problem. It turns out 
that equations (17) and (24) alone may be written entirely in terms of K and the barred 
quantities. On the other hand the two equations (25) and (26) containing Qy and 0 cannot 
both be so written. Thus it follows that no firm conclusion may be reached concerning the 
relative stability of two- and three-dimensional disturbances and Squire's theorem is not 
proven for radiating flows. This conclusion is unaffected by the values of R m and Pr and so 
remains true in both purely fluidynamic and non-thermally conducting flows with thermal 
radiation. However should it prove to be the case that equations (25) and (26) relate to 
disturbances always stable then their effect may be discounted and Squire's theorem in 
consequence would remain true. This may well be the case since the analysis of the follow- 
ing sections relating to two-dimensional disturbances in flows without thermal conductivity 
does indicate that then the perturbations Qy and 0 are always stable. 

5. Two-dimensional disturbances without thermal conductivity 

As a first study only two-dimensional disturbances without z-variation are considered, so 
that K1 = K. Further since in the determination of the steady state explicit forms of so- 
lution are available only in the absence of thermal conductivity, the stability analysis is 
restricted to this case with Pr ~ co. 

In the situation in which perturbations vy and by arise the stability criteria arise from the 
homogeneous equations (17) and (24) alone which, as remarked earlier, have been analysed 
by Lock and others. Should however vy and by be identically zero these two equations vanish 
but equations (16) and (27) for v x and bx now become homogeneous. These equations are 
however satisfied identically, for, from equations (18) and (19) with vz = 0, b~ ~- 0 it is 
then necessary that v~ and b~ be also identically zero. Hence no additional stability criteria 
are obtained. 

When thermal radiation is present, should only disturbances in the radiative flux and 
temperature occur the final pair of equations (25) and (26) become homogeneous and 
supplementary stability criteria may arise from their solution. The variable Qy may be 
eliminated from them to yield a single equation for 0. It is convenient to introduce a new 
variable q5 given by 

{ 16,co~0~ } 
q5 = iK(vl - c) + fl(~s ~ 2 )  0 (28) 

and then the governing differential equation becomes 

d2~b (K z + 3coZ ) { i f l K ( v i -  c)(K 2 + 3co 2) + 167ecoK2031) 
dy----i- - ~ 2  - - - c ~ E ~ _  y ~ 2 ) - q _ - ~  ~ ~ = O, (29) 
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where vl is given by equation (22) and, see Helliwell [6], 

(3o) - 2)8182 -F 2(81 + 82) 

x {[(3co - 2)82 d- 4]81 + [(3o) - 2)81 + 4]82(9 4 -F 3oy/3182(O r - 1)} 

MP 

2No(M cosh M - sinh M) 

M2p 2 

4No9 
{-~oZ(y 2 - 1 ) -  1} 

{(M 2 - 3o9 2) cosh My + 3o9 z cosh M} 

+ 
M 2 

16No(M cosh M - sinh M) z { ( 4 M 2  - 3o9z) cosh 2My + 3(.02 cosh 2M} 

M 2 ( 3o9y(81 - 82) + 3o9(81 + 82 -- 8182) -~ 2(281 - 82)(282 - 81) ] 

-t- ~ { ( - ~  ~-2)'~182 -t- 2(81 + 82) 

x { p 2 _ 2 P s i n h M  M sinh 2M } (30) 
M cosh M - sinh M + 2(M c o s h M - -  ~nh M) 2 

with 

R 
N =  ~-,  P = J +  

sinh M 

M cosh M - sinh M " 

The boundary conditions are derived from equations (9) and (10) with the relaxation of 
0 = 0 at y = _+ 1. Equation (8) may be used to eliminate Qx and Qz. Equations (25) and 
(26) are used to eliminate Qy so that the conditions relate to 0 alone. Thus, using equation 
(28) and noting that vl = 0 at y = + 1 the final form becomes 

( )  3o { 1 6 7 8 o g O 3 + _ - i K c f l }  2 _ 1 dq5 + - - ( K  2+3o92 ) 
e+ dy - 2 16~eog0T_+ ~ ~ c f l ( K / +  3o91) ~b = 0, 

y = + 1, (31) 

where e+ is the value of the emissivity and 0w_+ is the value of 01 at the appropriate boundary. 
The criterion for stable disturbances is that Imag(c) < 0. 
Whilst for general wave-number K a solution of equations (29) with (31) can only be 

obtained by numerical analysis, an exact solution is available when K = 1 and so in this 
instance the eigenvalue c may be obtained explicitly as a function of the parameters. For 
convenience set C = iflc and it then turns out that C satisfies the equation 

{(fgk 6 + m 2) sinh 2k + ( f  + g)mk a cosh 2k}C z 

- {(X+ + X_)(f9 k4 + m2) sinh2k + [X+(f  + gk 2) + X_(g +fk2)]kmcosh2k}C 

+ {(fgk 2 + m 2) sinh 2k + ( f  + g)mk cosh 2k}X+X_ = O, 

where X_+ a ~o9(1 + 3o2) , f  (2/82) 1, g (2/81) 1. = 16?eog0w+_, k = (1 + 3o92) ~, m . . . . .  
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This is a quadratic equation of the form ao  C 2  - -  a lC  + a2 = 0 with ao, al, a2 > 0 and 
thus Real(C) > 0 necessarily. It follows therefore that Imag(c) < 0 and the disturbances 
are always stable. 

6. Numerical  solutions 

Symmetric configurations with black walls at the same temperature are considered. Then 
~1 = e2 = 1 and O = 1 so that both v~ and 01 are even functions of y. When K = 1 one 
finds that eigenfunctions q5 relate to either symmetric or antisymmetric disturbances for 
which the corresponding eigenvalues are purely imaginary and such that, respectively 

16ye090a(2 sinh O + 3090 cosh O) 
Imag(c) = - 

fl~2(2f2 sinh f2 + 3o9 cosh g2) 

or, 

16Ve090~(2 cosh s + 3090 sinh f2) 
Imag(c) = - 

flf2(20 cosh s + 309 sinh s 

where O = (1 + 3o)2) ~ and 0w is the common value of 0w+. For general K r I equation 
(29) and conditions (31) may then be advantageously remodelled for purposes of numerical 
solution. Odd and even eigenfunctions may be separated so that each satisfies equation (29) 
but the domain becomes the interval 0 =< y < 1 with boundary conditions 

at y = 1, &b + ~09(K2 + 3092 ) J'. 16~eo)0~ -- iKcfl_ 
~ y  [ 16~eo903 _ iKcfl(K~. + 3092 ) J ~b = 0, (32) 

and, at y = 0, ~b = 0 for odd eigenfunctions, (33) 

- 0 for even eigenfunctions. (34) 
dy 

Let the eigenvalue be written explicitly c = a + ib with corresponding eigenfunction 
q5 = U + iV. Then the governing equation (29) may be written as the system of four first 

order linear equations 

dU d W  
- W ,  - f U  - gV, 

dy dy 

dV  dZ  
- Z, - g U  + f V ,  (35) 

dy dy 

where 

f ~- C{[Kbfi(K z + 3~ z) + 16ye090~][Kbfl(K z + 3o) 2) + 16ycagKZO~] 

+ K2fl2(K 2 + 3r - a) 2} 

~- 16C~,r - K2) (K  z + 3092)0~(vl - a), 

C = (K 2 + 3o~2)/{[Kbfl(K z + 3092) + 16yer ~ + K2fl2(K z + 309z)2(vl - a)2} . 
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The  bounda ry  condit ions become 

a t y =  1, E W + F Z + G U + I - I V = O ,  

EZ - F W  + GV + H U  = O, 

and at  y = 0, U = 0, V = 0 for  odd eigenfunctions,  

W = 0, Z = 0 for  even eigenfunctions, 

where 

E = Kb~(K 2 + 3o92) + 167eco03, 

G = ~r 2 + 3r + 1 @ ~ 0 ~ ) ,  

(36) 

F = Kafl(K 2 + 3o92), 

H = ~co(K 2 + 3wZ)Kafl. 

In  the case o f  odd  eigenfunctions one solution of  equat ions (35) is determined,  viz. 
U = U (I), V = V (t), W = W (a), Z = Z (1), fitting the boundary  condit ions U = 0, V = 0, 

W = 1, Z = 0 at  y = 0, and a second solution is also obtained,  viz. U = U (2), V -- V (2), 
W = W (2), Z = Z (2) fitting the al ternative condit ions U = 0, V = 0, W = 0, Z = 1 at 
y = 0. I t  is a simple mat te r  to show analytically tha t  U (2) = - V (I), V (2) = U (1), W (2) = 

= - Z ~  Z (2) = W (a). A linear combina t ion  of  these solutions is then derived to fit the 
condit ions (36). F r o m  this it t ranspires that  

= EW(11) + FZ(11) + GU(a ') + HV~ 1' = O, 

= e z i "  - Fw " + o v a "  - n v i "  = o, 

where sutfix (1) denotes the value of  the funct ion computed  at y = 1. This pair  o f  equa- 
t ions will be identically satisfied only if the initial choice of  a and  b has been made  cor- 

rectly in the determinat ion of  the solution U = U (1), etc. Thus  they are used to fo rm the 

basis o f  an interpolat ion and  i terat ion to find a and  b as follows. 

An  est imate is made  of  (a, b) and  ~(a,  b), 7-'(a, b) computed .  A second pa i r  o f  values 
(a + Ca, b) are taken and ~(a + Ca, b), 7S(a + Ca, b) computed ,  and  a third pair  (a, b + fib) 
taken and  ~(a, b + 6b), 7~(a, b + 6b) evaluated.  F r o m  these est imates for  ~/Oa,  O~/Sb, 
O~/Oa, ~7~/8b are obtained.  Hence by  assuming that  the correct  pai r  are (a + Aa, b + Ab) 
approx imate  values for  Aa and Ab are derived f rom the solution of  

0~  O~ 
~(a,b)  +-~a  Aa + 8b A b = O ,  

Okg O~ 
7 J ( a , b ) + ~ a  Aa + Ob Ab = O. 

For  even eigenvalues a similar procedure  is fol lowed with the solution U (1), etc. satis- 
fying the boundary  condit ions U = 1, V = 0, W = 0, Z = 0 at y = 0. 

In  bo th  cases the calculations are s tar ted f r o m  the known exact solution for  (a, b) at 
K = 1 and the value o f  K changed progressively f rom this base. The  following tables give 
the results for  var ious ranges of  values of  the parameters .  In  every instance Imag(c )  < 0 so 
tha t  disturbances in the radiat ive flux and  t empera tu re  alone are always stable. 

However  it should be noted  that  the eigenvalue p rob lem is not  o f  simple type. The  
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eigenvalue, c, appears non-l inearly in both  the differential equa t ion  and the boundary  

conditions.  Such problems have appeared in the li terature, but  with the eigenvalue present  

only in the differential equat ion,  see for  instance Kel ly  [15]. In such cases a discrete spec- 

t rum of  eigenvalues usually exists. Thus, for  the present problem,  a l though a unique eigen- 

value occurs when K = 1, one cannot  be certain that  the single eigenvalue for each ( K #  1) 

as determined by the numerical  procedure  is the only one possible. Fur ther  analysis o f  

this aspect of  the p rob lem is necessary, but  this is not  pursued here. 

TABLE 1 

Imag (c). Poiseuille flow 

Odd eigenvalues Even eigenvalues 

k 

co 1.0 0.1 0.1 
R 103 10 s 107 103 l0 s 107 103 l0 s 107 

0.2 -0.264 -0.086 -0.083 - 1.88 -0.198 -0.168 -0.546 -0.075 -0.063 
0.4 -0.132 -0.042 -0.041 -0.353 -0.037 -0.032 -0.238 -0.026 -0.022 
0.6 -0.086 -0.028 -0.027 --0.118 -0.012 -0.011 -0.103 -0.011 -0.009 
0.8 --0.063 --0.020 --0.020 --0.054 -0.006 -0.005 -0.052 -0.005 -0.005 
1.0 -0.049 -0 .0 i6  --0.015 -0.029 -0.003 -0.003 --0.029 -0.003 -0.003 
1.2 -0.039 -0.013 -0.012 -0.018 -0.002 --0.002 -0.018 -0.002 -0.002 
1.4 -0.032 -0.010 -0.010 -0.012 -0.001 -0.001 -0.012 -0.001 -0.001 
1.6 -0.027 --0.009 -0.009 --0.008 --0.001 -0.001 -0.008 -0.001 --0.001 
1.8 -0.023 -0.007 -0.007 -0.006 - 0.001 -0.001 -0.006 - 0.001 --0.001 

? = s / 3  , e = l ,  f l = 1 0 0 0 ,  M = 0 .  

TABLE 2 

lmag(c).Odde~enoa~es. Hartmannflow 

J -0 .5  0 0.5 1.0 
R 10 3 10 5 10 7 10 3 l0 s 10 7 10 3 l0 s 10 7 10 3 

K 

l0 s 10 7 

0.2 -11.2 -0.425 -0.171 -7.73 -0.348 -0.170 -6.13 -0.304 
0.4 -1.97 -0.080 -0.032 -1.45 -0.065 -0.032 -1.15 -0.057 
0.6 -0.657 -0.027 -0.011 -0.486 -0.022 -0.011 -0.384 -0.019 
0.8 -0.298 -0.012 -0.005 -0.220 -0.010 -0.005 -0.175 -0.009 
1.0 -0.161 - 0.007 -0.003 -0.119 -0.005 -0.003 - 0.095 - 0.005 
1.2 -0.098 -0.004 -0.002 -0.073 -0.003 -0.002 -0.058 -0.003 
1.4 -0.065 -0.003 -0.001 -0.048 -0.002 -0.001 -0.038 -0.002 
1.6 -0.045 -0.002 -0.001 -0.033 -0.002 -0.001 -0.026 -0.001 
1.8 -0.033 -0.001 -0.001 -0.025 -0.001 -0.001 -0.019 -0.001 

-0.170 -5.91 -0.297 -0.170 
-0.032 -1.11 -0.056 -0.032 
-0.011 -0.369 -0.019 -0.011 
- 0.005 - 0.168 - 0.009 - 0.005 
-0.003 -0.091 -0.005 -0.003 
-0.001 -0.055 -0.003 -0.002 
-0.001 -0.036 -0.002 -0.001 
-0.001 -0.026 -0.001 -0.001 
-0.001 -0.019 -0.001 -0.001 

?=s/a, e =  1, fl=1000, co=0.1, M = 5 .  
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TABLE 3 

Image (c). Odd eigenvalues. Hartmann flow 
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K 

fl 100 10000 
R 103 l0 s 107 10 a l0 s 107 

0.2 - 1 1 . 4  -1 .83  -1 .68  -3 .43  -0 .115  -0 .018  
0.4 -2 .17  -0 .344  -0 .317  -0 .643  -0 .021 -0 .003  
0.6 -0 .724  -0 .155  -0 .106  -0 .215  -0 .007  -0 .001 
0.8 -0 .328  -0 .052  -0 .048  -0 .098  -0 .003  -0 .001 
1.0 -0 .178  -0 .028  -0 .026  -0 .053  -0 .002  -0 .000  
1.2 -0 .108  -0 .017  -0 .016  -0 .032  - 0 . 0 0 i  -0 .000  
1.4 -0 .071 -0 .011 -0 .010  -0 .021 -0 .001 -0 .000  
1.6 -0 .050  -0 .008  -0 .007  -0 .015  -0 .001 -0 .000  
1.8 -0 .034  -0 .006  -0 .005  -0 .011 -0 .000  -0 .000  

= s / a ,  e =  1, ~o=0.1 ,  J = 0 . 5 ,  M = 5 .  

T A B L E 4  

Imag(c).Odde~enva~es. Hartmannflow 

K 

e 0.1 10 
R 103 l0 s 107 103 105 107 

0.2 -0 .611 -0 .030  -0 .017  -69 .5  - 3 . 0 4  -1 .69  
0.4 -0 .115  -0 .006  -0 .003 - 12.4 -0 .570  -0 .319  
0.6 -0 .039  -0 .002  -0 .001 --3.88 -0.191 -0 .107  
0.8 --0.018 --0.001 --0.001 --1.75 -0 .087  --0.049 
1.0 -0 .010  -0 .001 --0.000 -0 .946  -0 .047  -0 .026  
1.2 -0 .006  -0 .000  -0 .000  -0 .577  --0.028 -0 .016  
1.4 --0.004 -0 .000  -0 .000  -0 .382  --0.018 -0 .011 
1.6 -- 0.003 - 0.000 - 0.000 - 0.268 - 0.013 - 0.007 
1.8 -0 .002  -0 .000  -0 .000  -0 .196  -0 .009  -0 .005  

7 = s/z, fl = 1000, o9 = 0.1, J =  0.5, M =  5. 
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